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PRODUCl'ION OF BYDROGEN CYANIDE FROM METHANE I N  A NITROGEN PLASMA JET 

I. Reactive Species T i t r a t i o n ;  -her Q,uantitative Studies  

Hark P. Freeman 
Central  Research Division, American C y a n a d  Co., Stamford, Cmnect icut  

INTRODUCI'ION 

The react ion of n t h a n e  v i t h  a ni t rogen plasma t o  make hydrogen cyanide and acet- 
ylene is of considerable i n t e r e s t .  Conversions are high enough t o  be of  commercial 
i n t e r e s t  on the  one hand,(l,2) vh i l e  t he  formation of H a  in p a r t i c u l a r  proceeds i n  

(1) 
( 2 )  

E. M. Hulbur t  and M. P. Freeman, Trans. N.Y. Acad. S c i . ,  2 ,  No. 25, 770 (1963). 
E. W. Leutner, Ind. Ehg. Chem. Process Design Develop., 2: 315 (1963). 

such an i n t e r e s t i n g  and reproducible way tha t  c l a r i f i c a t i o n  of the details of t he  
react ion should considerably advance t he  use of the  plesma jet i n  8ynthOtiC chew 
i s t r y ,  and fu r the r  might be expected t o  cont r ibu te  r lgn i f l can t ly  t o  baaic chendcal 
knowledge. 

The forrmlly i d e n t i c a l  synthes is  of BCB from "active Ditrogon" aad methane has 
been extensively s t u d i e d ( ~ 5 )  f o r  'mre than a h a l f  century. %at the mysteam are 

( 3 )  K. R. Jenninge and J. Y. Llnnet t ,  Quart. Rev. (London) l2, 116 (1958). 
(4) G. G. Manella, Chem. Rev. 63, 1 (1963). 
( 5 )  1. E. V. Ewms, C. R. Freeman, and C. A. Winkler, Can.  J. Chem. 2, 1271 

(1956). 

d i f f e r e n t  is apparent, f o r  t h e  high-voltage discharge Is Z high exc i t a t ion  & r i c e ,  
whereas t h e  plasma j e t  is thought t o  be nearly in local t he rml  equi l lbr lum .nd 
hence a l w  exc i t a t ion  device (spectroscopical ly  speaking i n t e r r e d l a t e  betveen ' a r c  
and spark . (6) )  Furthermore, the plasaa jet experiments an perforad at one-half at- 

(6)  F. A. Kovoler and Yu. K. Kvaratskheli, Opt. Spectr . ,  (IkSR) (Eugllgh T r m l . ) ,  - io, 200 (1961). 
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mosphere (as opposed t o  about 1 tor r )  and at an average temperature tventy  times 
as high on t h e  absolute  s c a l e  as room temperature, vhere t h e  bulk of  active ni-  
trogen experiments have been performed. F ina l ly ,  i n  t h e  plasma je t  t h e  carbona- 
ceous species  reac t ing  i s  e v i d e n t i a l l y  not methane. That i s ,  t h e  products o ther  
than HCN are acetylene and higher  acetylenes v i t h  various degrees of sa tura t ion .  
These are t h e  same products that  would form i f  t h e  j e t  vere, say, argon. It has b been shown elsevhere(7)  t h a t  t h e  precursors  f o r  these  products form rap id ly  compared 

I 

/ (7)  M. P. Freeman and J. F. Skrivau, A.1.Ch.E. (Am. I n s t .  Chem. Engrs.) J. ,  g, 
450 (1962). 

I 

> 

,' 
t o  t h e  t i m e  f o r  mixing of t h e  methane v i t h  t h e  j e t .  

I 
There i s  no quest ion t h a t  t h e  plasma J e t  provides a d i f f i c u l t  environment i n  which 

The enonnous temperature gradients  and conse- t o  do "good vork" i n  t h e  usual  sense.  
quent inhomogeneities are general ly  thought of as being a sort of physical  chemical 
b a r  s i n i s t e r .  

t o  a l l o w  systematic  inves t iga t ion  of the  jet as a whole, vhich i n  i ts  h o t t e r  p a r t s  re- 

,' 

i ef fec ts  due t o  t h e  temperature gradients  are found t o  be s u f f i c i e n t l y  reproducible 

' presents  i n  a steady state f l o w  s i t u a t i o n  a chemically unique environment found only 
/ i n  high i n t e n s i t y  a r c  devices. As ccsnpensation for t a c k l i n g  this  diff icul t  environ- 

ment, t h e  inves t iga tor  need not vork with t r a c e  q u a n t i t i e s ,  bu t  i n s t e a d  v i t h  p a r t i a l  
pressures  and r e l a t i v e  conversions at least t v o  orders  of magnitude higher  than those 

On t h e  o ther  hand, perhaps because of t h e i r  extreme magnitude, t h e  

I encountered i n  ac t ive  ni t rogen research. 

) The vork reported here  represents  a systematic continuation of  a study performed 
some t i m e  ago.(8) The procedure followed then 8s nov is  t o  add methane through an an- 

I 
* (8) M. P. Freeman, "The Nature and Quant i ta t ive  Determination of t h e  Reactive 

Species I n  A Nitrogen Plasma Jet," presented at t h e  147th Natl. Meeting, Amer. 
Chem. SOC., Apri l  5-10, 1964, Phi ladelphia ,  Penn. 

$' 
5 
/ ' 
4 c a l i b r a t e d  f l o v  rate and a measured heat flow). It  has  been shovn t h a t  under these 
\ condition xing is  very rapid,  as is t h e  drop i n  temperature def lncd from average 

t /  is f u r t h e r  c h i l l e d  by t h e  entrainment of cold product gas ( t h e  fastest of s e v e r a l  
\ quench methods inves t iga ted  on t h e  b a s i s  of i ts  e f f i c a c y  i n  quenching t h e  ammonia 

decomposition react ion)(T)  and t h e  f l o v  of HCN i n  t h e  product gas is chemically de- f termined. Except as noted, t h e  data are taken at 350 2 20 t o r r  chamber pressure as 
1 t h i s  pressure  i s  found t o  reduce t h e  formation of s o l i d  product t o  an ins igni f lcant  
) level. As t h e  methane is added at various flw rates t h e  corresponding rate of  pro- 

{ duction of HCN is  noted. 
p la teau  is observed vhich seem t o  ind ica te  t h a t  some ac t ive  species  is indeed being 
t i t r a t e d  (Figure 1). 
simple dependence of t h e  p la teau  l e v e l  on j e t  power level (Figure 2). ' may in t u r n  be shown t o  c o r r e l a t e  with t h e  rate of production of ions i n  t h e  arc 

nular  s lot  t o  a confined ni t rogen jet of prec ise ly  deflned average enthalpy (i.e.,  a 

enthalpy. 17Y A i t e r  about one mil l isecond t h e  r e s u l t i n g  flow of high temperature species  

Just 88 i n  e .g . ,  Winkler's work v i t h  a c t i v e  ni t rogen,  a 

O f  utmost i n t e r e s t  i n ' t h e  o lder  study vas t h e  provocatively 
Because t h i s  

! 
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> 
; ’ not i n  some way be responsible f o r  the  chemistry. 

a long-term quant i ta t ive  spectroscopic study of plasma j e t s ( 9 )  cur ren t ly  i n  progress 

it ra i sed  t h e  quest ion,  s t i l l  &?zesolved, as t o  whether t h e  ions  might 
As a d i r e c t  consequence t h e r e  is  

/ ( 9 )  M. P. Freeman, “A Quant i ta t ive  Examination of  the  LTE Condition i n  t h e  Ef- 
f luent  of an Atmospheric Pressure Argon Plasma Jet,“ CE-JILA-ONR Symposium 
on t h e  “ In te rd isc ip l inary  Aspects of  Radiative Energy Transfer,”.  Phi ladelphia ,  
Penn., Feb. 24-26, 1966. I n  Press .  

1 

/ 

/ 
t h a t  is expected t o  ul t imately y i e l d  information on t h e  nature and quant i ty  of ions ,  
atoms and high temperature molecular species  flowing i n  j e t s  of common plasma ma- 
terials. 

J’ 

Although thermodynamic ca lcu la t ions  had previously been performed f o r  t h e  n i t r o -  
gen-carbon-hydrogen system(l0) they were not i n  a form easy t o  compare with plasma 

/ 
‘ (10) C. W. Marynmski, R. C. P h i l l i p s ,  J. C. P h i l l i p s ,  and N. K. Hiester, Ind. 

Eng. Chem. Fundamentals, 1, 52 (1962). 

/ 
1 j e t  results obtained under normal operat ing cons t ra in ts .  The ca lcu la t ions  were there- 
; , f o r e  reproduced(11) with t h e  per t inent  parameters var ied t o  conform t o  t h e  exigencies of 
; I  

i 
1 (11) B. R. Bronfin, V. N .  DiStefano, M. P: Freeman, and R. N. Haz le t t ,  “Thermo- 

chemical Equilibrium i n  t h e  Carbon-Hydrogen-Nitrogen System at Very High Tem- 
peratures ,”  Presented at the  15th C I C  Chem. Engr. Conf., Q,uebec City,  Quebec, 
Oct . 25-27, 1965. 

\ 

1 

7 
j ,/ plasma je t  operation. 

I/ products. 
/ a t ta ined  average enthalpy, nor at any experimentally used r a t i o  of  methane t o  n i t ro-  

(Note t h a t  t h e  apparent fa l l -of f  i n  calculated y i e l d  a t  high power l e v e l s  
/ ~ ~ ~ % w  methane f l o w  rates i s  due t o  t h e  competitive formation of cyano, CN, which 
, may be presumed t o  be an HCN precursor.) 

7 The re la t ionship  between the  observed and ca lcu la ted  equi l ibr ium y i e l d  f o r  t h e  

1 a r o n f i n ( l 2 )  who thereupon advanced t h e  p laus ib le  hypothesis t h a t  i n  e i t h e r  case t h e  

Figures 3 and 4 show t h e  results obtained when s o l i d  carbon 
i s  suppressed i n  t h e  ca lcu la t ions  t o  be cons is ten t  with its absence i n  t h e  observed 

An important f a c t  immediately emerges. Neither a t  any experimentally 

gen, has t h e  thermodynamically expected y i e l d  o f  HCN f o r  a well-mixed system been 

CHb-N2 System is s t r i k i n g l y  similar t o  t h a t  recent ly  reported f o r  t h e  F-C-N system by 

I 
r‘ 

(12) B. R. Bronfin and R. N. H,azlett, Ind. Eng. Chem. F’undamentals, 5, 472 (1966). 

observed y i e l d  i s  i n  some way a consequence of  equi l ibr ium considerat ions.  
from earlier work on t h e  acetylene system(7) it would seem t h a t  t h e  composition and 

N o w ,  

# 

i 
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8 
enthalpy dependence a r e  not w h a t  one would%xpect f o r  mixing and subsequent freezing 
of  a r eac t ion  i n  a confining tube and f u r t h e r  f o r  t he  s h o r t e r  r eac to r s  t h e  enthalpy 
at t h e  exit i s  still  very high. We s h a l l  t he re fo re  d is regard  t h i s  p o s s i b i l i t y  here. 
(Note however, t h a t  Bronfln is cur ren t ly  t e s t i n g  t h i s  nodel by means of computer 

(13)  B. R. Bronfln, personal cammunication. 

I \ 

s imula t ion . )  
t he  product d i s t r ibu t ion  t o  be a function of the  enthalpy and canposit ion p ro f i l e s  

t i o n s  ind ica t e  t h a t  composition i s  only of secondary importance i n  the  "plateau" 
region so t h a t  presumably the  enthalpy p r o f l l e  would be cont ro l l ing .  This d i f f e r s  

versably consumes a c e r t a i n  p o t e n t i a l  o f  t he  nitrogen Jet t o  form HCH t h a t  is c lear ly  
a function only of the  temperature and/or composition and ve loc i ty  p r o f i l e  i n  the  
n i t rogen  at the  point o f  mixing but  before mixing occurs. 
p r o f i l e  o f  a plasma j e t  i s  uniquely determined by the  enthalpy p r o f l l e , ( g )  then the 
r eac t ing  po ten t i a l  as a consequence would in turn be uniquely r e l a t e d  t o  t h e  heat 
flow i n  t h e  gas. 

The expected way i n  which equilibrium could cont ro l  t he  reac t ion  i s  for 

at t h e  of t h e  r eac to r  where the re  is an onset of rapid quenching. The calcula- \ 

from true t i t r a t i o n  i n  the important respect t h a t  i n  t i t r a t i o n  one i n  e f f ec t  irre- ( 

\ 

\ 

I f  w e  a~sumc t h e  ve loc i ty  \ 
1 

Despite t h i s  d i f fe rence ,  t h e r e  is  no way t o  d i s t ingu i sh  unambiguously between these 
This is  because f r a c t i o n a l  heat l o s s  f r o m  a 

, 
two p o s s i b i l i t i e s  using but one reac tor .  
plasma i n  a pa r t i cu la r  r e a c t o r  type has been shown t o  be primarily a function of 
r eac to r  length  and a rc  un i t  design,(14) so t h a t  t he  r a t i o  of e x i t  heat f l o w  t o  i n l e t  hea t  \ 

( 1 4 )  J. P. Skrivan and W. VonJaskowaky, Ind. Eng. Chem.  Process Design Develop. 4, 
371 (1965). 

flow is nea r ly  constant.  The primary objec t ive  of t he  work reported here v u  there- 
fo re  t o  ca re fu l ly  d i s t ingu i sh  between these p o s s i b i l i t i e s  by performing i d e n t i c a l  
t i t r a t i o n  experiments in tvo or =re reac tore  t h a t  d i f f e r  s i g n i f l c a n t l y  in length i n  
order  t o  determine unambiguously whether i n l e t  or exit heat flaw cont ro ls  t h e  
reaction. 

It  had been in fer red  fran t h e  earlier work by r a t h e r  incomplete evidence t h a t  s m -  
how t h e  capac i ty  t o  make HCN is pr imar i ly  dependent on a r c  conditions no matter hav 
far removed t h e  in j ec t ion  po in t  is fran the  a rc  un i t  i t s e l f .  
t h i s  experiment wat# t he re fo re  t o  sys temat ica l ly  check t h i s  t e n t a t i v e  conclusion by 
c a r e f u l  con t ro l  and va r i a t ion  of t he  in j ec t ion  poin t  on a l o sg  nactor. 
standpoint of t he  t i t r a t i o n  hypothesis,  i f  the arc un i t  conditions are indeed control- 
l i n g ,  then a very long-lived reactive spec ies  is Implied; such a spec ies  is hardly t o  
be expected under these  experimental  conditions.  

Finally,  at the  same time the o lde r  vork VY being done, Leutner(l5) using a very 

A f u r t h e r  ob jec t ive  of 

Ran the  

s h o r t  t ubu la r  reac tor  of o the rv i se  the sam design found he v u  able t o  work at 

(15) E. H. kutner, Ind. Eng. men. Procesm Design Develop., 2, 3 5  (1963). 



339 atmospheric ressure  and achieve a ni t rogen f i x a t i o n  of 12.5% (erroneously reported 
as 2 1 . 9 W P  i n  a ni t rogen (62%)-argon je t  (erroneously reported as pure ni t rogen)  

1 

(16) C. S. Stokes, personal co&unication. 
1 

.J with a to ta l  flow of 5.0 l(STP)/min. and a power flowing i n  t h e  gas of  11.5 kw X 
55%(16) = 6.32 kw. 
s i b l e  t o  attempt t o  see if t h e  two sets of r e s u l t s  were consis tent .  
son w i l l  be made i n  Part I1 of t h i s  paper, where t h e  e f f e c t  of argon d i l u t i o n  
of  t h e  plasma will be discussed i n  some d e t a i l .  The contr ibut ion such a reac tor  
makes t o  t h e  present  work is of course t o  extend t h e  range of reac tor  lengths  s tudied.  

I t  was deemed desireable  t o  reproduce h i s  reac tor  as nearly as pos- 
Such compari- ' 

J 

EXPERIMENTAL 
1 / Apparatus 

Plasma-jet reactors  cons is t  of t h r e e  p a r t s ,  head or  a r c  u n i t ,  in termediate  sec t ion ,  
and quenching sect ion.  The plasma-jet hea t  u n i t  used f o r  t h i s  study i s  a Thermal Dy- 
namics 640 Plasma-jet with " turbulent  nitrogen" e lec t rodes ,  powered by two 12 kw weld- 
ing  power suppl ies ,  open c i r c u i t  voltage 160 v o l t s ,  connected i n  p a r a l l e l  but  with 
opposite phase ro ta t ions  on t h e i r  3 $ input  so as t o  minimize l i n e  frequency r ipp le  i n  
t h e  output. The intermediate sec t ions  (Figure 5 )  are made of copper and are f u l l y  
water-cooled, as is  t h e  head. The t h r e e  intermediate  sec t ions  are themselves modular. 
Of length 2". 2", and b " ,  they are mutually compatible and can be joined i n  any order  
t o  make a reac tor  of length 2 ,  4, 6,  or 8 inches with a feed por t  at any mult iple  of 
2 inches.  
res idua l  gaps l e f t  when t h e  surrounding gaskets  a r e  t i g h t l y  compressed by t h e  joining 
threaded par t s .  
s o l i d s  i n j e c t i o n  p o r t ,  which is about l / h "  from t h e  nozzle e x i t ,  opened up t o  a 180' 
s l o t .  
reac tors  has a 7/32" diameter as do t h e  intermediate  reactors .  Insofar  as t h e  various 
reac tor  configurations vary only i n  length and feed poin t ,  it w i l l  s u f f i c e  t o  d is t in -  
guish between them with a bracket  specifying first t h e  dis tance from t h e  poin t  of hea t  
balance t o  the  point of methane feed,  and second t h e  dis tance from t h e  point  of heat  
balance t o  the  e x i t  of t h e  reac tor .  Thus t h e  8" reac tor  fed  a t  t h e  2" point  would be 
designated (2"; B"), v h i l e  t h e  Leutner reactor is (-1/4"; 0"). 

Note t h a t  t h e  feed r ings  a r e  not exac t ly  reproducible i n  t h a t  t h e r e  a r e  

The "Leutner reactor"  s tandard Thermal Dynamics spray nozzle w i t h  t h e  

The spray nozzle and t h e  turbulen t  n i t rogen  e lec t rode  used with t h e  intermediate 

The quenching sec t ion  where t h e  hot stream of plasma and react ion products are quenched 
by entrainment of cold product gas i s  simply a s t a i n l e s s  s t e e l  pot 11 inches long and 
11 inches i n  diameter sparsely wound with soldered-on copper tubing. 
t o  heat damage are vell-cooled, bu t  between t h e  windings t h e  pot may get hot  enough t o  
cause f l e s h  bums.  A t  t h e  o u t l e t  of t h e  quenching sec t ion  is s i x  f e e t  of 1 inch t h i c k  
rubberized ac id  hose. This i n  t u r n  i s  fas tened  t o  t h e  bottom of a v e r t i c a l  mixing sec- 
t i o n  cons is t ing  of a t h r e e  foot  long 2" diameter pipe loose ly  packed with g lass  wool. 
The carbon dioxide is mixed with t h e  product stream at t h e  i n l e t  t o  t h e  mixing sect ion.  
The top of t h e  mixing sec t ion  is connected t o  a high capaci ty  steam vacuum j e t  with an 
automatic cont ro l  valve for maintaining des i red  pressures .  

A l l  p a r t s  subject  

i 
( 

A Toeppler pump i s  arranged t o  withdraw 522 m l  of gas from t h e  t o p  of t h e  mixing sec- 
t i o n  at room temperature and a t  t h e  r e a c t o r  pressure.  
f o r  ana lys i s  i n  a s u i t a b l e  gas c o l l e c t i o n  system. 

This a l iquot  i s  then co l lec ted  

1 3 
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1 340 . 
Gas flaws except f o r  methane a r e  metered by o r i f i c e  gages ca l ib ra t ed  by water dis- 

Methane f l o w ,  much l e s s  c r i t i c a l ,  
A l l  cooling water flows are 

placement t o  within 1% f o r  C Q p  and N2, respec t ive ly .  
is determined by a rotameter ca l ib ra t ed  by ca lcu la t ion .  
determined by experimentally ca l ib ra t ed  rotameters. 
i s  determined by su i t ab ly  graduated, i n t e rcons i s t en t  mercury thermometers. 

Procedure 

Heat flaw i n  the  n i t rogen  plasma a t  t h e  point  of methane introduct ion is determined 
by subt rac t ing  from the  voltage-current product i n  the  a rc  the  heat  ldst t o  a l l  cool- 
i ng  water  suppl ies  up t o  t h a t  point .  For the  most p a r t ,  j u s t  t he  heat  f l d n g  a t  the  
e x i t  of t he  head is required.  For da ta  taken at a p a r t i c u l a r  heat  flow an attempt i s  
made t o  keep the heat f l a w  constant .  In t h i s  endeavor the  r e l a t i v e l y  grea t  i n t r i n s i c  
s t a b i l i t y  of plasma jets made by t h i s  manufacturer he lp ,  but  espec ia l ly  i n  runs l a s t ing  
f o r  several hours it is  necessary t o  cont inua l ly  introduce s m a l l  correct ions.  
con t ro l  is grea t ly  f a c i l i t a t e d  thmugh use of an analog camputer t h a t  continuourly 
monitors voltage, cu r ren t ,  and cooling water temperature r i s e  and e i t h e r  d i r ec t ly  con- 
trois t h e  r e c t i f i e r s  o r  displayo the ne t  heat  flow in k i l lowa t t s  continuously on a re- 
corder  char t  so t h a t  manual cor rec t ions  mag be introdvced as needed. Heat l eve l s  
given are generally co r rec t  t o  within 25%. 

i Cooling water temperature r i s e  

' 

, 
, 

T N s  

\ 
Except where noted, t h e  pressure  i n  the  quenching chamber i s  kept a t  350 2 20 t o r r .  

. The a c t u a l  pressure of each sample is known t o  fl t o r r  but t h a t  is not a s ign i f icant  
datum i n  t h e  analysis and is used only as a consistency check. Quench sec t ion  pres- 
sure measures intermediate  sec t ion  pressures  f a i r l y  v e l l ,  but probably not t he  arc 
pressures  because of t h e  pressure drop through the f r o n t  o r i f i c e  of the plasma jet. 

\ 

These arc units are not instrumented t o  measure t he  pressure ins ide  t h e  head. J 
Whenever methane flow rate, paver l e v e l  and/or pressure conditions are changed, t he  

system is operated f o r  eight minutes before  tak ing  a sample. 
s u f f i c i e n t  t i m e  t o  e s t a b l i s h  a constant composition. 

This is found t o  be 

The col lec ted  gas a l iquo t  is slowly bubbled through 200 m l  of i c e  cold-caustic con- , 
1 

t a i n i n g  12.5 millimoles of base. 
evacuated so tha t  t he  e n t i r e  sample, toge ther  v i t h  the  air used t o  f lv sh  the  l i nes ,  
might be co l lec ted  i n  t he  caustic and t he  space over it. This is followed by one min- 
u t e  of Vigorous shaking. This procedure has been found s a t i s f a c t o r y  f o r  t he  quantita- 
t i v e  recovery of Cog and HCR. T o t a l  ac id  i n s t h e  gam is then determinod by back-t i t ra t ion 
with 0.500 H C 1  u n t i l  a l l  the carbonate haa been converted t o  bicarbonate (pH = 8.3). 1 
Ammoniacal M is then added aa an ind ica tor  and cyanide determined by precipi tametf lc  , t i t r a t i o n  with 0.0100 J s i l v e r  ion. This permits t h e  i n i t i a l  r a t i o  of ECIi t o  CO2 t o  
be determined. 
r a t e  of  HCN fo l lavs  d i r e c t l y .  Hote t h a t  f o r  convenience i n  preeentat ion the  f low r a t e  \ 
of HCR is nlwws presented as some f ract ion of 0.383 l(STP)/sec.(0.0171 gram moles 
sec-1) so t h a t  it mey conveniently be compared t o  the  most often used flw rate of n i t r d  

<< 
gen. v 

Accounting f o r  t he  var ious sources of uncer ta in ty ,  the ac tua l  Hclo flow rate is e s t i -  

The hal f  l i ter  space over t he  caus t i c  is i n i t i a l l y  

Because t h e  absolute  f l aw  rate of Co2 is known, t he  absolute  production 

In t he  flgures t h i s  "standard" f lw rate %e represented as G. 

i nated t o  be within about 10% of t h e  zqorted value,  snd t he  heat  flw t o  within 5s. 
Air leakage i n t o  t h e  system, a potential source of error, is held  below 0.055 of the  * 

t o t a l  g M  f l a W .  < 
The upper limits of operat ion are fired by t h e  anset of plugging. For all but the  

Leutntr  reac tor ,  s o l i d s  fommtion is o t h c d s e  negl ig ib le  t h o u  not noneriatent .  
high povar levels the Leutner reactor does not  plug,  t he  heat  of t he  Jet e v i d a n t d l y  
serves to c l ea r  i nc ip i en t  pluga, but  f a i r  quant i ty  of a l o w  densi ty  b r m  s o l i d  is 
produced t h a t  is about 142 polymerized Ha. 
pared t o  t h e  t o t a l  methane u t i l i z e d .  

of t he  e igh t  fold average enthalpy range u'e 3250-7000%. 

' 
< 
I 

( 

A t  

I t a  qua l i t y  i s  est imated t o  be s a l  COQ- 

i 

Although temperatures u e  not  quoted, t he  temperatures corresponding t o  the  e l c t m s  \ 

f 
< < 

6 
e 
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Composition Dependence 

Figure 6 shows t y p i c a l  " t i t r a t i o n "  curves f o r  t h e  d i f f e r e n t  s i t u a t i o n s  of i n t e r e s t .  
I n  every case a plot  of HCN produced vs.  methane added (both normalized t o  t h e  "stan- 
dard flow rate" of 0.0171 l (STP)/sec)  divides  c leanly i n t o  two renimes separated by a 
break t o  which w e  r e f e r  as t h e  "equivalence point ."  1 poin t ,  t h e  y i e l d  is simply dependent on methane feed r a t e  bu t  not on t h e  power level .  

1 Lines Of s lope 1/3 and 2 /3  are included on t h e  graph t o  f a c i l i t a t e  intercomparison i n  
t h i s  region. 
t h a t  t h e  break qui te  general ly  occurs along t h e  l i n e  correspondine t o  a s lope of 113. 
I n  t h i s  region it i s  as though t h e  ni t rogen were somehow present  i n  excess. To the 
r i g h t  Of  t h e  break t h e  HCN throughput i s  seen t o  depend only veakly on methane but ,  as 
is  demonstrated below, i s  a s t rong and simple funct ion of hea t  flow i n  t h e  ni t rogen 
before mixing. 
ane dependence on the r i g h t  shows a real l i n e a r  increase with methane flow rate i n  
every case,  but t h i s  s lope is not found t o  be p a r t i c u l a r l y  reproducible s ince  it i s  apt 
t o  change s l i g h t l y  when t h e  apparatus i s  demounted and reassembled. 
has been chosen t o  emphasize t h e  plateau-l ike character  of t h e  curve. 
d a t a  excepted may be explained by t h e  f a c t  t h a t  i n  t h i s  case t h e  e x i t  r a t h e r  than the  

len t ran t  hea t  flow is regulated.  Because of t h e  s m a l l  hea t  loss i n  t h i s  shor t  sect ion 

To t h e  l e f t  of t h e  equivalence 

Although t h e  da ta  are t o o  s c a t t e r e d  t o  d r a w  f i rm conclusions, it i s  c l e a r  

' 
Excluding f o r  t h e  moment t h e  (-1/4"; 0") da ta  (Figure 6-d) ,  t h e  meth- 

) 

\ 
Hence t h e  sca le  

Note t h a t  t h e  

only a second order  e f f e c t  of t h i s  magnitude would be expected. 

Power Level Dependence 

To take account of t h e  res idua l  s lope of t h e  " t i t r a t i o n "  curves,  intercomparison of 
power-level-dependence s t u d i e s  is done at t h e  same methane f l o w  rate corresponding t o  
one ha l f  the  "standard" flow whether it is an in te rpola ted  poin t  taken from a f u l l  
t i t r a t i o n  curve as shown i n  Figure 6 ( f i l l e d  p o i n t s )  o r  an i s o l a t e d  measurement (open 
p o i n t s ) .  
as a reference t o  a id  i n  intercomparison. 
s i s t e n t  with t h e  o lder  da ta  of Figure 1 while t h e  d a t a  of Figure 7-b should exact ly  
reproduce Figure 2. The exten t  t h a t  they f a i l  t o  do t h i s  i s  a f a i r  measure of  t h e  
nonreproducibi l i ty  of t h i s  experiment when performed i n  d i f f e r e n t  l a b o r a t o r i e s ,  with 
d i f f e r e n t  equipment, v i t h  t h e  chemical analyses performed by d i f f e r e n t  persons. 

' 

The best  l i n e  through t h e  o i d  da ta  (Figure 2) appears i n  Figures 7 through 9 
Note t h a t  Figure 6-a should be exact ly  con- 

I n  Figure 7-b da ta  from two d i f f e r e n t  2" reac tors  are intermingled as shown. This 
i s  t o  be compared with t h e  (0";  8") d a t a  of Fieure 7-a. 
i n  t h e  experimental s c a t t e r  it would indeed be d i f f i c u l t  t o  improve t h e  agreement. 
Now the  heat leaving t h e  8" reac tor  f o r  a given input  is only about one h a l f  t h a t  
leaving a 2" reac tor  for t h e  same input ,  so t h a t  t h e r e  can be no quest ion but  t h a t  t h e  
HCN production depends only on t h e  heat  flow at t h e  point  of mixing (or at t h e  e x i t  O f  
t h e  head) and not at a l l  on t h a t  at t h e  e x i t  of t h e  reac tor .  

It is  q u i t e  c l e a r  t h a t  with- 

Mixing Point Dependence 

Figure 8 demonstrates c l e a r l y  t h a t  t h e  a b i l i t y  of t h e  ni t rogen t o  make HCN does not 
p e r s i s t  d m  t h e  tube a t  i ts  high i n i t i a l  l e v e l ,  bu t  r a t h e r  decays as t h e  heat  flowing 
i n  the  gas decays. 
- VB heat flow at the  exi t  of t h e  head, and on t h e  r i g h t  as a funct ion of  t h e  heat  flow- 
ing  at t h e  point of mixing, t h e  6" poin t .  
ca t ing  t h e  exis tence of a "long-lived" reac t ive  spec ies  i s  wrong. 

Shown are a p a r t i c u l a r  set of (6"; 8" )  d a t a  p l o t t e d  on t h e  l e f t  

Hence t h a t  p a r t  of the  ear l ier  work indi-  

Leutner Reactor 

Data f o r  t h e  simulated Leutner r e a c t o r  are shown i n  Fi&ure 9. Despite t h e  fac t  t h a t  
these  data were taken a t  atmospheric pressure  it is  c l e a r  t h a t  the  results are com- 
p l e t e l y  consis tent  with those of t h e  o ther  reac tors .  
made i n  t h e  e a r l i e r  work t h a t  t h e r e  is  but  s l i g h t  pressuke dependence f o r  t h i s  reaction. 

This atzrees with an observation 

., .... . . ~ .  - ... . ._  . _ , . - .  .. 
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Because of t he  use of d i luen t  argon in h i s  vork, comparison with Leutner's results must 
a w a i t  Part I1 of t h i s  paper which w i l l  e x p l i c i t l y  t r e a t  t h i s  complication. 
icance here is t h e  f a c t  t h a t  reactors  from 1/4" t o  8" i n  length give the  same r e s u l t ,  
dependent only on en t r an t  hea t  flow. 
is measured, but presumably in t h i s  case the re  is a near ly  negl ig ib le  d i f fe rence . )  

Product Distr ibut ion 

I 
( 

[ 

OS s igni f -  

(Actually f o r  t he  1 /4"  reac tor  t he  exit heat flow 

\\ 
P l a t e a u  Region - Mass spectrometer checks made on product formed i 

acetylenes t o  be the only spec ies  present  t o  any appreciable extent.  
of course as a solvent while t h e  H2 is simply t h e  balance of t h e  hydrogen. 
is apparently fo2med by some sort of i r r e v e r s i b l e  process t o  be discuased fu r the r  be- 
lov  while t he  r e l a t i v e  amounts of methane and acetylene seem t o  conform t o  considera- 

t h e  "plateau" 

The R2 is present 
region show 12, H2, HCN, C2H2 and CHI, together  with some small quan t i t i e s  4 of higher a 

The HCN 
\ 

\ 

\ 

t i o n s  inves t iga ted  previous ly(7)  f o r  the cracking of methane in an argon jet. 1 

I n i t i a l  Region - To the  left of t he  break region where the  p o t e n t i a l  of t he  n i t ro-  
gen J e t  t o  r eac t  is in excess ,  one might expect a l l  of t he  methane t o  be converted t o  
H C N ,  i .e. , an i n i t i a l  s t r a i g h t  l i n e  of un i t  s lope ,  but -such is not t he  caae. Earlier \ 

imply t h a t  one mole of acetylene is formed f o r  each mole of HCN produced. 
however, admittedly crude m a s s  spectrometer checks shoved no more than two-thirds t o  
three-quarters  mole of acetylene t o  each mole of HCN. 
an i n i t i a l  s lope corresponding t o  one-quarter t o  one ha l f  mole of acetylene f o r  each 
mole of HCH. 
would s t i l l  seem t o  be t he  rule. 
designed f o r  accuracy nor  high prec is ion  in t h i s  low y i e l d  region and it is possible 
t h a t  t h e  differences in t h e  low HCN y i e ld  region might have r e f l ec t ed  some small change 

work seemed t o  favor an i n i t i a l  s lope of 1 / 3  f o r  a l l  t i t r a t i o n  curves. This vould \. 
A t  the  tima, 

The work reported here  indicates ~ 

\ A t  t he  breakpoint ,  however, equimolar quan t i t i e s  of H a  and acetylene 
The ana ly t i ca l  m d  sampling apparatuses were nei ther  ' 

in ana ly t i ca l  procedure. 
not  reproducible and t h a t  product d i s t r ibu t ion  here  r e f l e c t 8  some in tangib le  of the 
process such as "mixing ef f ic iency" ,  e t c .  ( N o t e  t h a t  t h e  reac tors  are constructed 80 
t h a t  t he  widths of t he  s l o t s  through vhich the  methane ?love a r t  not prec i se ly  repro- 
ducible .  ) 

I t  seema more probable, though, #at t h i s  region is indeed - 

DISCUSSIOB 

The T i t r a t i o n  Currc 

It i s  c l e a r  t h a t  t he  r eac to r  length md hence t h e  heat  flw at the  onset of sudden 
quenching is i r r e l e v a n t ;  t h e  heat Z l w  a t  t h e  mixing point  ev iden t i a l ly  g o v ~ l n ~  the  
ex ten t  of reaction. 
v i t h  t h e  methane decreases as t he  ni t rogen flow6 dawn t h e  r eac to r  i n  such a vay that  
its p o t e n t i a l  t o  reac t  with methane, at l e a s t  with t h i s  r eac to r  geometry, is a func- 
t i o n  only of heat flow in t h e  ni t rogen before mixing. 

It is -her seen t h a t  t h e  a b i l i t y  of the nit rogen jet  t o  react 

I n i t i d  Region - Roln a d i f f e r e n t  perspect ive,  with no methane ?laving in a long 
tube t h e  reactive p o t e n t i a l  of t h e  ni t rogen jet  is seen t o  p e r s i s t  t o  8- appreciable 
ex ten t  almost inde f in i t e ly ,  but  &cays an t he  heat  flow decays, pres-4 throw 
heat  conduction processes. As t h e  methane flow is introduced, 8- of t h i s  " p o t e n t i d  
to  read" (PR for b r e v i t y )  is now rued up by t h e  methane, v h i l e  t he  balance decqys by 
t he  heat conduction process. 

Equlrslence Point - As t h e  =thane flow is increased,  more of t he  PR of the ni t ro-  

This gives rise t o  t h e  " i n i t i a l  regIo2l.l' 

gen jet is wed by t he  =thane u a t i l t h e  equivrlence poin t  is reached. 
nane of  the PR s u n i r e s  t h e  mixing of  the  J e t  with the methane md the break in the 
cUP7C occurs. 

A t  t h i s  point 

~ 

of t h e  PR is st i l l  used up by heat conduction processes at the equivalence poin t .  k 
t h e  = t h m e  flw is fu r the r  Increased,  the  equivalent  amount r i x e s  c loser  and claret 

Pla teau  Region - Because mixing is  not itmtantaneoum at the  point  of mixing, sane 
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\ t h e  t i t r a t i o n  CUES. 

/ 

t o  t h e  S l o t  So t h a t  l e s s  of  t h e  res idua l  d 2s l o s t  t o  heat conduction. 
process probably gives rise t o  t h e  observed res idua l  s lope i n  t h e  "plateau reuion" of 

The P o t e h t i a l  To React 

This l a t t e r  

It remains t o  propose an explanation f o r  t h e  "PR." Although something is being 
t i t r a t e d ,  it is by no means clear just  what it is. Nor, as of t h e  present  time, has 
anyone experimentally character ized a nitrogen J e t  s u f f i c i e n t l y  w e l l  t o  c l e a r l y  dis- 
t inguish between l i k e l y  a l t e r n a t i v e s .  
of these p o s s i b i l i t i e s  f o r  t h e i r  h e u r i s t i c  value. 

Nonetheless, it is i n s t r u c t i &  t o  examine some 

' 
5 

Heat Balance - From Figure 2 a f a i r l y  constant heat requirement of 1280 kcalfmole 
may be obtained. 
endothermic heat  of the  most probable react ion at 6000°(17): 

This corresponds very nice ly  (and. probably for tu i tous ly)  t o  t h e  

(17) "Janaf Thermochemical Tables . I 1  Dow Chemical Company, Midland, Michigan, Dee- 
ember 31, 1960. b 

I 
I 

A H  = 1281 k c a l  / 
I , or t h a t  of the  equal ly  probable react ion at 4500': 

f 

AH = 1225 k c a l  1 

I 

> t i t r a t e d  by t h e  methane. 
From t h i s  point  of v i e w  it would appear t h a t  t h e  heat  of the  jet  is i n  some way being 

Active Species - One might w e l l  ask however, if it is J u s t  the hea t  being t i t r a t e d  
why docs t h e  react ion apparently s t o p  when the  core o f  t h e  J e t  is still 4000-6000'K? 
And why is t h e  amount of cyano (CN) formed so sharply l imi ted  and constrained so f a r  
below t h e  equilibrium value? 
t h a t  delay f u r t h e r  cooling, so t h a t  f a s t  quenching cannot be the answer. 
ready answer t o  these questions is t h a t  t h e  HCN react ion is far  t o o  slow t o  e q u i l i -  
b r a t e  i n  J e t  residence times. Of t h e  manifold complex of forward reac t ion  paths lead- 

' i n g  t o  equi l ibr ium, only a f e w  of them w i l l  be f a s t  enough t o  produce HCN i n  t h e  t i m e  
avai lable .  But these f a s t  react ion paths  might w e l l  involve nitrogenous species  which 
at thermal equi l ibr ium corresponding t o  t h e  average enthalpy of t h e  jet ,  would flow in 
t r a c e  amounts but which, aa a consequence of the hot core, are present  i n  t h e  plasma 
j e t  at many orders of  magnitude higher throughout. 
s i d e r  t h i s  as t h e  t i t r a t i o n  of some sort of e s p e c i a l l y  reac t ive  spec ies  i n  the je t .  

Note t h a t  below 4000' s t rong  exothermic react ions occur 
The most 

Thus we are l e d  n a t u r a l l y  t o  con- 

Consider f o r  example a J e t  producing 0.00171 moles sec-1 of HCN. From Figure 2,  we 1 I can see  t h a t  t h i s  requires  about 9 kw. OS heat flowing in t h e  gas. If we assume there  
f i a  a small core t o  t h e  j e t  at 12,000' (enthalpy at one-half atmosphere = 500 kcal /  
L mole),(l8) then the  heat flaw can be accolmted f o r  by assuming the  hot  core occupies i 

1 -  

t 
4 

I (18) F. Martinek, "Thermodynamic and Transport Proper t ies  of Gases, L i q u i d  and Solids" 
McCraw-Hill Book Co., Inc., New York, N.Y., 1959, p. 130. 

I' 

J 
j 

3 
J 
I 



1 
I 

I 

345 / about half t h e  dlamcter of t h e  j e t  (one fourth the  a rea)  and t h a t  t h e  nitrogen flowing 
ou t s ide  this core carries neg l ig ib l e  enthalp . In t h i s  ca lcu la t ion  i s  the unproven 

over t h e  e n t i r e  cross-section. Under the  assumed core conditions the  Set is 100% 
assumption ca r r i ed  over from t h e  argon j e t ( 9  J t h a t  the  mass f lux  of nitrogen is constant ( 

d i s s soc ia t ed  and t h e  atoms 17% ianized. Tfie f luxes  are then: 

atom flow:  1 / 4  X 2 X ( 1  - 0.17) X 0.0171 = 0.0071 moles sec-1 

ion  flov: 1 / b  X 2 X 0.17 X 0.0171 = 0.00145 moles sec-1 
I 

The ion f l w  is thus seen t o  be in exce l len t  agresment v i t h  t h e  0.00171 moles sec-1 
production rate o f  HCN. 
core  temperature but is never the less  a promising p o s s i b i l i t y .  

To some exten t  t h i s  may be due t o  a for tuna te  choice of hot 

On the o the r  hand t h e r e  seems t o  be no good way t o  account f o r  t h e  reac t ion  on the 
b a s i s  of nitrogen atoms, i n  t h i s  case present i n  l a rge  excess,  suggesting t h a t  the  
n i t rogen  atoms are somehow deac t iva ted  before t h e  carbonaceous spec ies  en te r s  t he  hot 
core.  In so fa r  M t he  hydrogen from t he  d issoc ia t ion  of methane must completely flll 
the  r eac to r  i n  a very shor t  vhile, it seems probable t h a t  t ha  nitrogen at- u e  
deac t iva ted  fram t h i s  i n i t i a l  i n m i o n ,  and t h a t  t he  carbonaceous spec ies  reacWwith 
t h e  nitrogen ions (vhich might w e l l  be molecular ions by t h i s  time) or aome other 
spec ies  sometime l a t e r .  

CONCLUSION 

By systematic va r i a t ion  of ' reac tor  geometry it has been conclusively demonstrated 
t h a t  methane added through a pe r iphe ra l  s l o t  t o  a n i t rogen  j e t  t i trates,  apparently 
in t h e  true meaning of t h e  word, some p o t e n t i a l  of t he  nitrogen J e t  t o  r eac t  with the 
thermal decomposition products of methane t o  form HCN. It is further demonstrated 
t h a t  t h e  p o t e n t i a l  t o  r eac t  is simply r e l a t ed  t o  heat flow even far down t h e  reac tor  
and is therefore  probably the  consequence of some s teady-s ta te  temperature and/or 
composition prof l le  i n  a flw with l o c a l  thermal equilibrium. 

For t h e i r  h e u r i s t i c  value, t v o  s u p e r f i c i a l l y  d i f f e ren t  explanations are proposed t o  
expla in  t h e  "poten t ia l  t o  react." On the  one hand, t h e  experimental endotherm of the 
reaction at t h e  equivalence po in t  is ehom t o  be qu i t e  cons is ten t  v i t h  t h e  hea t  flov- 
i ng  in the  hot core of t h e  j e t ,  for a j e t  model cons is ten t  with vhat ve l i g h t  expect. 
On t h e  o the r  hand, f o r  t h e  same heat  f lov  and jet  model, t h e  y i e l d  i s  shown t o  be con- 
s i s t e n t  v f t h  the  flw rate of  e.g., ions at the  poin t  of mixing and it may equ i l ly  
w e l l  be postulated t h a t  t he  ions  or some other  i d e n t i f i a b l e  spec ies  are in f a c t  an 
ac t ive  ingredient being t i t r a t e d .  

I t  is c l e a r l y  po in t l e s s  t o  attempt t o  conjecture fur ther  on t h e  mechanism invol-d 
in t h e  t i t r a t i o n  v i thou t  more direct evidence on t he  spec ies  and r e l o c i t y  p ro f l l ee  i n  
t he  jet. A spectroscopic program cur ren t ly  undenqy i n  t h e r e  l abora to r i e s  dl1 pre- 
sumably help t o  flll t h i s  gap. 
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